
NAAICE Middleware API Documentation

Florian Mikolajczak, Dylan Everingham, Hannes Signer
NAAICE AP2

University of Potsdam, Zuse-Institute Berlin

February 6, 2025

1 Introduction

This document describes the API for the NAAICE Middleware. In NAAICE, network-
attached accelerators (NAA) will be integrated into HPC centers using RoCEv2, allowing
for IP-based remote direct memory accesses (RDMA). In order for this to work, a mid-
dleware/communication library has to be designed. The communication between HPC
nodes and NAAs will be implemented as remote asynchronous RPC calls. As low-level
libraries libibvers and librdmacm will be used. A communication library for RDMA
communication with NAAs has already been produced. This library includes an RPC-
style data transfer, where the end of the data transfer automatically synchronizes both
communication partners, making a standalone synchronization protocol unnecessary.
After the data transfer is finished, the actual computation starts.
Still, we propose a middleware library to achieve the following goals:

1. Easy integration into HPC applications
In comparison to the already existing communication library, most communica-
tion details should be transparent to the user. They can and should be abstracted
away from the user, since an application developer should not deal with commu-
nication specifics, but rather only specify which computation should be offloaded
to an NAA. Communication details include a communication context containing
ibverbs-specific structures such as Infiniband queue pairs or details of memory
region handling.

2. Fast adaption by the HPC community
The middleware library should be easily understood and used by the HPC com-
munity. As such, the popular and well known Message Passing Interface (MPI)
standard will be taken as an inspiration to formulate a NAA middleware, which
will reproduce or reuse functionalities and structures of the MPI standards. We
assume that a middleware with analogies to MPI can be more easily adopted by
the HPC community.

3. Ability for communication-computation-overlap (CCO)
Instead of serial communication and computation, the aim of the middleware is to
allow both to happen at the same time. For this, non-blocking communication calls
are necessary. Non-blocking communication functions return before the actual
communication i.e. data-transfer is done. The host node can then continue with
some other computation while the NIC continues with the data transfer.

1

2 Reasons for a New Middleware

At the beginning of the middleware development, existing middleware library or stan-
dards used within the HPC community were analyzed to ascertain, whether a fully new
middleware library was necessary. Two popular standards within the HPC community
include MPI and Global Address Space Programming Interface (GASPI). Both allow for
two- and one-sided communication. The GASPI implementation GPI-2.0 also specifies
RDMA calls [1]. Implementing RDMA for one-sided communications calls is part of the
MPI standard. However, popular implementations of MPI such as OpenMPI employ
RDMA for one-sided communication calls 1.

2.1 MPI

MPI is a standard for message passing in distributed HPC applications [2]. As such it
supports single program multiple data (SPMD) parallelism. An MPI program usually
consists of multiple processes which are part of a so-called communicator. The com-
municator structure is used for addressing between the different processes. A process
is identified by its communicator and rank within the communicator. The MPI stan-
dard defines a multitude of functions, including ones for setting up/finishing an MPI
program and point-to-point or collective operations.

2.2 GASPI

GASPI is another API for distributed HPC applications [1]. As such it implores a Par-
titioned Global Address Space (PGAS). PGAS is a global memory address space par-
titioned between the involved local processes. GASPI supports SPMD parallelism like
MPI. The communication structure in GASPI is called a group. Within such a group,
each process is again given a rank. The group of process and its rank are again used for
addressing.

2.3 Conclusion

Both MPI and GASPI revolve around a group of processes that communicate with each
other via messages. In MPI this structure is called a communicator, while in GASPI
it is known as a group. Usually, in both standards, the processes in a group or com-
municator do the same calculations with different data and exchange data in between
computation segments. However, the NAA will generally not be taking part in a group
of processes as an equal member executing the same code as other processes. Rather,
the NAA should be used to offload a specific computation task.
Therefore, integrating the NAA as a process in an MPI communicator (and implement-
ing the one-sided communication part of the MPI standard), or analogously doing the
same for GASPI, introduces problems with existing HPC applications. These existing
applications would need to be changed to treat the NAA-process differently than any
other process. To prevent this from happening, we propose a new middleware API just
for interacting with the NAA; to connect, exchange data and trigger computation as an
asynchronous RPC. However, the functions of our middleware are defined with MPI in
mind such that users familiar with MPI will experience an ease of use with our proposed
middleware.

1OpenMPI 5.0 Documentation

2

https://docs.open-mpi.org/en/v5.0.x/

3 NAAICE Middleware API

All routines return an integer of type naa_err. Successful routines return 0 on success
or a positive integer on failure, indicating the failure reason.

1. naa_create

• Finding IP address and socket ID for an NAA matching required function code.
Prepare connection, register and exchange memory region information between
HPC node and NAA

• IP address and socket ID are already known to HPC node. Info is retrieved from
resource management system (Slurm) at creation/deployment of slurm job. User
knows function code for method/calculation to outsource to NAA. Connection to
NAA is done by connection establishment protocol from the Infiniband standard.
During connection preparation, the HPC nodes allocates buffers for memory re-
gions and resolves route to NAA. After connection establishment, memory region
information is exchanged between HPC node and NAA. The protocol for this was
designed in NAAICE AP1 (see documentation for AP1).

• C Binding:

int naa_create(uint function_code, naa_param_t *input_params,
size_t input_params_amount, naa_param_t *output_params,
size_t output_params_amount, naa_handle *handle);

A function code, a list of input and output parameters with their corresponding
number of elements and a naa handle must be passed by the user. The function
code needs to be defined in advance by the application developers and encodes the
functionality to be executed on the receiver side. The list for the input and output
parameters is of type naa_paramt_t and must always contain the address and the
number of bytes to be transferred to or from the NAA for the given parameter
(see also Listing 4 for an example). The singlesend option, which is disabled by
default, can be set as an additional boolean parameter. With this option enabled,
the corresponding memory region will only be transferred once during the first
RPC call, e.g. to transfer initialization data. This method will register the addresses
of the parameters with ibverbs as memory regions, hiding the memory region
semantic from the user. All memory regions, for both input and output parameters
are announced to the NAA during naa_create(). Therefore, memory regions can
not be changed from input to output between iterations. Currently, no example
has been found where this is necessary. The handle object was previously returned
by the library and includes information on how to connect to the right NAA. The
resource management system will provide information on the IP of the NAA and
socket ID of the NAA.

2. naa_invoke

• Goal: Write Data (in 1 or more RDMA operations) to NAA and trigger RPC-like
behavior.

• Application programmer and NAA programmer have to agree on the size and
meaning of each memory region beforehand. For now, the syntax and semantics of
the transferred data is not explicitly stated.

3

• Data transfer is done with RDMA_WITH_IMM. If the transfer requires n|n > 1 opera-
tions, n − 1 RDMA_WRITE operations are done. The last writing operation is RDMA_-
WITH_IMM, where the immediate data value is the function code. RDMA_WITH_IMM
signals the end of the data transfer to the NAA and initiates calculations on the
NAA (RPC start).

• C Binding:

int naa_invoke(naa_handle *handle);

Only the naa_handle is passed. Input and output data are fixed during naa_-
create().

3. naa_test

• Check if result data has been written to HPC node.

• Much like MPI_TEST, the naa_test call is non-blocking and polls the completion
queue of the queue pair associated with the data transfer.

• C Binding:

int naa_test(naa_handle *handle, bool *flag, naa_status *status)

A call to naa_test returns flag = true if the operation identified by handle is
complete. In such a case, the status object is set to contain information on the com-
pleted operation. The call returns flag = false if the operation is not complete.
In this case, the value of the status object is undefined.

4. naa_wait

• Check if result data has been written to HPC node.

• Much like MPI_WAIT, the naa_wait call is blocking and polls the completion queue
of the queue pair associated with the data transfer. naa_wait returns, when data
has been written back to the HPC node.

• C Binding:

int naa_wait(naa_handle *handle, naa_status *status)

The call returns, in status, information on the completed operation.

5. naa_finalize

• Disconnect in an orderly fashion from the NAA and clean up allocated resources.

• In naa_finalize, the connection between HPC node and NAA is cleaned up as
standardized in the Infiniband specification. In addition, resources that were allo-
cated for and during the data transfer are cleaned up. naa_finalize is not called
after each iteration of a given simulation/job, but only once, when the program
terminates and the NAA is no longer needed.

• C Binding:

int naa_finalize(naa_handle *handle)

4

4 Errorcodes for the RPC

The following errorcodes have been set up.

• 0x01: Socket not available

• 0x02: Kernel timeout

• 0x03-0x0f: reserved

• 0x10 - 0x7f: Application / calculation errors

5

Pseudocode Example: Vector Addition

1 / / A l l d a t a i s g a t h e r e d and s e n t t o t h e NAA in one go .
2 # include < s t d l i b . h>
3 # include </sys/socket . h>
4 # define FNCODE_VEC_ADD 0
5 typedef s t r u c t naa_param_t {
6 void * addr ;
7 s i z e _ t s i z e ; / / number o f b y t e s t o be s e n t
8 } naa_param_t ;
9

10 void *a , *b , * c ;
11 a = c a l l o c (6 4 , s i ze of (double)) ;
12 b = c a l l o c (6 4 , s i ze of (double)) ;
13 c = c a l l o c (6 4 , s i ze of (double)) ;
14

15 s e t _ i n p u t s (a , 64 , b , 64) ;
16

17 / / f i r s t i n p u t memory r e g i o n with e n a b l e d s i n g l e s e n d o p t i o n
18 naa_param_t input_param [2] = { { a , 64 * s i ze of (double) , t rue } ,
19 { b , 64 * s i ze of (double) , f a l s e } } ;
20 naa_param_t output_param [1] = { { c , 64 * s i ze of (double) , f a l s e } } ;
21 naa_handle handle ;
22

23 naa_create (FNCODE_VEC_ADD, &input_params , 2 , &output_params , 1 , &handle) ;
24

25 i n t f l a g = 0 ;
26 naa_s ta tus s t a t u s ;
27 naa_invoke(&handle) ;
28

29 n a a _ t e s t (&handle ,& f lag ,& s t a t u s)
30 while (! f l a g) {
31 do_other_work () ;
32 }
33 p r o c e s s _ r e s u l t s (c) ;
34 / / s e t i n p u t s wi th new d a t a
35 s e t _ i n p u t s (a , 64 , b , 64) ;
36

37 naa_invoke(&handle) ;
38 / / wa i t f o r RPC t o f i n i s h
39 naa_wait (&handle ,& s t a t u s)
40 p r o c e s s _ r e s u l t s (c) ;
41

42 n a a _ f i n a l i z e (&handle) ;

6

References

[1] Daniel Grünewald and Christian Simmendinger. The gaspi api specification and its
implementation gpi 2.0. In 7th International Conference on PGAS Programming Models,
volume 243, page 52, 2013.

[2] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard Version
4.0, June 2021.

7

	Introduction
	Reasons for a New Middleware
	MPI
	GASPI
	Conclusion

	NAAICE Middleware API
	Errorcodes for the RPC

